- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Haiduc, Sonia (2)
-
Malkadi, Abdulkarim (2)
-
Alahmadi, Mohammad (1)
-
Tayeb, Ahmad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Malkadi, Abdulkarim; Alahmadi, Mohammad; Haiduc, Sonia (, Proceedings of the 17th International Conference on Mining Software Repositories)null (Ed.)Programming screencasts can be a rich source of documentation for developers. However, despite the availability of such videos, the information available in them, and especially the source code being displayed is not easy to find, search, or reuse by programmers. Recent work has identified this challenge and proposed solutions that identify and extract source code from video tutorials in order to make it readily available to developers or other tools. A crucial component in these approaches is the Optical Character Recognition (OCR) engine used to transcribe the source code shown on screen. Previous work has simply chosen one OCR engine, without consideration for its accuracy or that of other engines on source code recognition. In this paper, we present an empirical study on the accuracy of six OCR engines for the extraction of source code from screencasts and code images. Our results show that the transcription accuracy varies greatly from one OCR engine to another and that the most widely chosen OCR engine in previous studies is by far not the best choice. We also show how other factors, such as font type and size can impact the results of some of the engines. We conclude by offering guidelines for programming screencast creators on which fonts to use to enable a better OCR recognition of their source code, as well as advice on OCR choice for researchers aiming to analyze source code in screencasts.more » « less
An official website of the United States government
